COMMUNICATION ENGINEERING

Joint and Conditional Entropy

Preliminary concepts

> Joint Probability of X and Y is $p(X, Y)$, probability that X and Y occur simultaneously
\therefore If X, Y are independent,

$$
p(X, Y)=P(X) P(Y)
$$

$>$ Conditional probability of X given $Y, P(X \mid Y)$, is probability that X takes on a particular value given Y has a particular value
> Conditional probability of Y given $X P(Y \mid X)$, is probability that X takes on a particular value given Y has a particular value

Relationship (Bayes Theorem)

$\Rightarrow P(X, Y)=P(X \mid Y) P(Y)=P(X) P(Y \mid X)$ or

$$
\begin{aligned}
& P(X \mid Y)=P(X, Y) / P(Y) \\
& P(Y \mid X)=P(X, Y) / P(X)
\end{aligned}
$$

$>$ if X, Y independent:

- $\mathrm{P}(X \mid Y)=\mathrm{P}(X)$
- $P(Y \mid X)=P(Y)$

Joint Entropy

$>\mathrm{H}(\mathrm{X}, \mathrm{Y})-$ Joint Entropy of X and $\mathrm{Y}($ average uncertainty of the communication system as a whole)

$$
\mathrm{H}(\mathrm{X}, \mathrm{Y})=-\sum_{\mathrm{j}=1}^{\mathrm{m}} \sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{p}\left(\mathrm{x}_{\mathrm{j}}, \mathrm{y}_{\mathrm{k}}\right) \log _{2} \mathrm{p}\left(\mathrm{x}_{\mathrm{j}}, \mathrm{y}_{\mathrm{k}}\right)
$$

$>\quad \mathrm{H}(\mathrm{X})$ - Entropy of the transmitter /Average uncertainty of the channel input Where

$$
\begin{aligned}
& H(X)=-\sum_{j=1}^{m} p\left(x_{j}\right) \log _{2} p\left(x_{j}\right) \\
& p\left(x_{j}\right)=\sum_{k=1}^{n} p\left(x_{j}, y_{k}\right)
\end{aligned}
$$

$>\mathrm{H}(\mathrm{Y})$ - Entropy of the receiver / Average uncertainty of the channel output

$$
\mathrm{H}(\mathrm{Y})=-\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{p}\left(\mathrm{y}_{\mathrm{k}}\right) \log _{2} \mathrm{p}\left(\mathrm{y}_{\mathrm{k}}\right)
$$

Where

$$
p\left(y_{k}\right)=\sum_{j=1}^{m} p\left(x_{j}, y_{k}\right)
$$

Conditional entropy

$>\mathrm{H}(\mathrm{Y} \mid \mathrm{X})$: average uncertainty about the channel output given that X was transmitted

* It indicates how well one can recover the received symbols from the transmitted symbols
* It gives a measure of error or noise

$$
\mathrm{H}(\mathrm{Y} \mid \mathrm{X})=-\sum_{\mathrm{j}=1}^{\mathrm{m}} \sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{p}\left(\mathrm{x}_{\mathrm{j}}, \mathrm{y}_{\mathrm{k}}\right) \log _{2} \mathrm{p}\left(\mathrm{y}_{\mathrm{k}} \mid \mathrm{x}_{\mathrm{j}}\right)
$$

$>\mathrm{H}(\mathrm{X} \mid \mathrm{Y})$: average uncertainty about the channel input after the channel output has been observed
It indicates how well one can recover the transmitted symbols from the received symbols

* It gives a measure of equivocation

$$
\mathrm{H}(\mathrm{X} \mid \mathrm{Y})=-\sum_{\mathrm{j}=1}^{\mathrm{m}} \sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{p}\left(\mathrm{x}_{\mathrm{j}}, \mathrm{y}_{\mathrm{k}}\right) \log _{2} \mathrm{p}\left(\mathrm{x}_{\mathrm{j}} \mid \mathrm{y}_{\mathrm{k}}\right)
$$

Relationships between joint and CONDITIONAL ENTROPIES
$>H(X, Y)=H(X \mid Y)+H(Y)$ or
$H(X \mid Y)=H(X, Y)-H(Y)$
$>H(X, Y)=H(Y \mid X)+H(X)$ or
$H(Y \mid X)=H(X, Y)-H(X)$
$>$ When X and Y are independent $H(Y \mid X)=H(Y)$
and $\quad H(X \mid Y)=H(X)$

Problems

$>$ A discrete source transmits messages $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}$ with probabilities $0.3,0.4$ and 0.4 The source is connected to the channel given in figure. Calculate all the associated entropies

THANHOL

